ООО «КиренскТеплоРесурс»

Опыт строительства и эксплуатации котельных на биотопливе.
Реализация инвестиционных проектов в коммунальной энергетике.

Основные проблемы эксплуатации устаревших объектов теплоснабжения и их последствия:

Несоответствие установленной мощности и типа котельных установок подключённой нагрузке

Высокий уровень морального и физического износа оборудования

Неэкономичный вид топлива

Низкое качество теплоснабжения

Низкая надёжность оборудования

Высокая стоимость услуги

Высокий уровень экологической опасности

ПАРАДОКС:

ИЗ-ЗА ОТСУТСТВИЯ СРЕДСТВ НА МОДЕРНИЗАЦИЮ

Дорого платить за некачественную услугу!!!

Решение:

ИНВЕСТ-ПРОЕКТ Высокое качество теплоснабжения

Высокая надёжность оборудования

Низкая стоимость услуги

Низкий уровень экологической опасности

Цели и задачи проекта :

- Повышение безопасности и надёжности котельных.
 Улучшение качества поставки тепла потребителям;
- Улучшение ситуации по охране окружающей среды в регионе. Снижение количества выбросов вредных веществ и парниковых газов на единицу отпускаемой тепловой энергии;
- Повышение эффективности работы котельных за счёт снижения удельного расхода на отпуск 1 Гкал. тепла;
- Сокращение затрат при производстве тепла.

Технико-экономические характеристики котельных топлив. Сравнительная таблица

	Характеристики топлива		
Вид топлива	Теплотворная способность, ккал/кг	Влажность, %	Цена топлива
Природный газ	11 765	2-3	5 200 руб/тыс.м3
Электричество	-	-	3,6 руб/кВт
Мазут	9 600	до 5	18 000 руб/т
Дизельное топливо	10 300	2-3	40 000 руб/т
Каменный уголь	4 500	10-12	4 000 руб/т
Древесная щепа (пл. м3)	2 000	до 55	1 000 руб/пл. м3
Пеллеты	4 000	8-12	5 500 руб/т
Фрезерный торф	2 000	до 55	1 000 руб/т

Вид топлива	Среднеэксплута- ционный КПД котельной, %	Количество топлива на выработку 1 Гкал, т	Топливная составляющая в себестоимости 1 Гкал, руб
Природный газ	92	0,093	711
Электричество	98	1,16 (кВт)	4 270
Мазут	85	0,123	2 214
Дизельное топливо	92	0,106	4 240
Каменный уголь (механ. загрузка)	85	0,262	1 048
Каменный уголь (ручная загрузка)	40	0,557	2228
Древесная щепа	85	0,588 (пл. м³)	588
Пеллеты	90	0,278	1 529
Фрезерный торф	80-82	0,610	610

Предельные величины тарифов (без учета возврата инвестиций)

Природный газ	1,2 – 1,8 тыс. руб./Гкал	
Древесная щепа	1,2 – 2,5 тыс. руб./Гкал	
фрезерный торф	1,5 - 2,8 тыс. руб./Гкал	
пеллеты	2,5 – 3 тыс. руб./Гкал	
уголь (механическая загрузка)	2,0 – 3,5 тыс. руб./Гкал	
уголь (ручная загрузка)	3 – 5 тыс. руб./Гкал	
электричество	3 – 5 тыс. руб./Гкал	
мазут	4 – 6 тыс. руб./Гкал	

Формула расчета периода окупаемости проекта

банковского процента и период окупаемости, год годового отпуска тепла: Си - сумма инвестиций, тыс. руб.

Обанковский процент (удорожание)

довой отпуск тепла, Гкал

 $allow{} allow{} al$

Рекомендуемый тип котла в зависимости от единичной установленной мощности

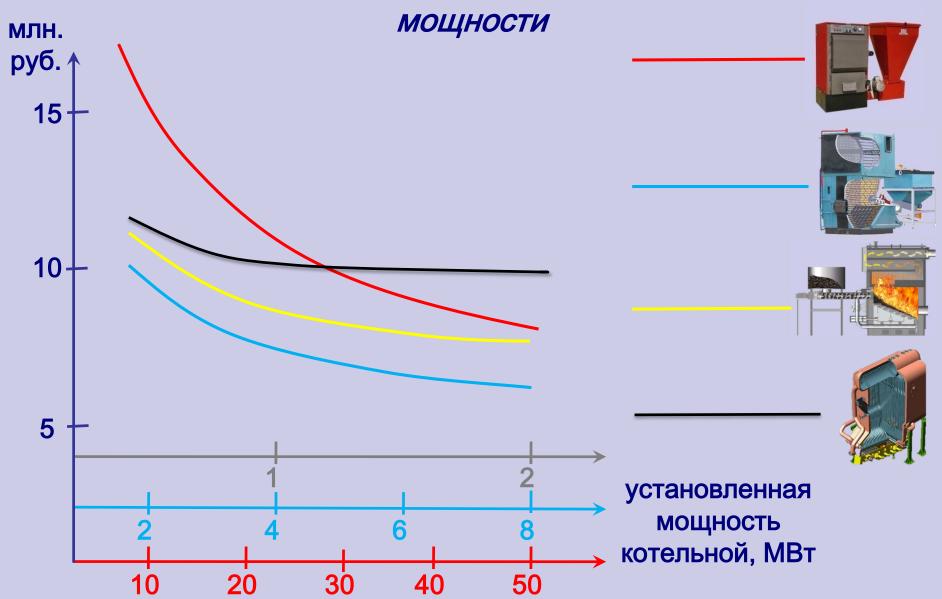
20-500 КВт

автоматизированный пеллетный котел

500-1500 КВт

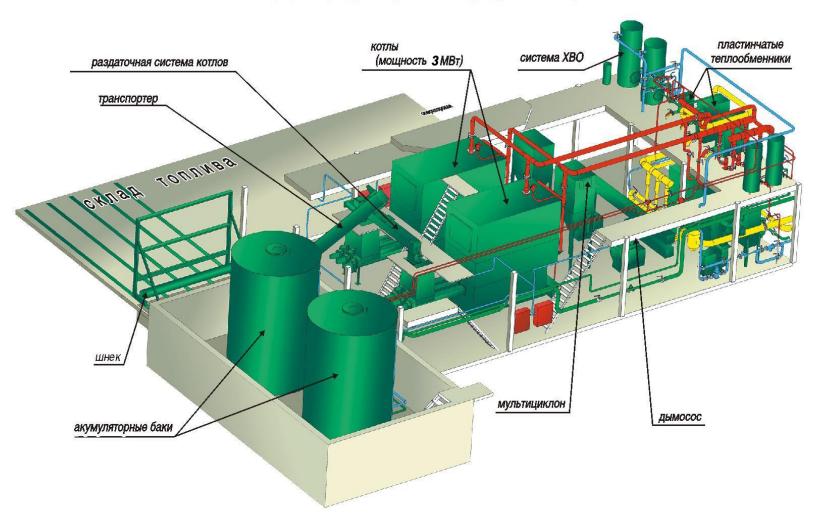
щеповой котел с неподвижной колосниковой решеткой

1500-10000 КВт


щеповой котел с подвижной наклоннопереталкивающей колосниковой решеткой 10000-100000 KBT

котел с кипящим слоем

Стоимость строительства за МВт установленной


Механизмы финансирования реконструкции котельных

- Целевое финансирование
- Концессия, в т.ч. государственно-частное партнерство
- Частный инвестиционный проект
- Энергосервисный контракт

Общий вид в автоматизированных котельных на биотопливе

(щепа, фрезерный торф; 7 МВт)

Склад топлива

Шнековый механизм подачи топлива

Транспортер топлива и раздаточный механизм котлов

Раздаточный механизм котлов

Механизм золоудаления

Насосы 1 контура

Пластинчатые теплообменники

Г. Усть-Кут Иркутской области, котельная «Западный грузовой район», предприятие инвестор: ООО «Энергосфера – Иркутск». Концессия.

Подвижный пол подает щепу из склада топлива на горизонтальный шнек. Работает правая секция. Общий вид котла спереди, сбоку.

Вся информация по работе котла выведена на сенсорный экран управления. С него можно как переключать с одного меню на другое, так и контролировать и задавать параметры.

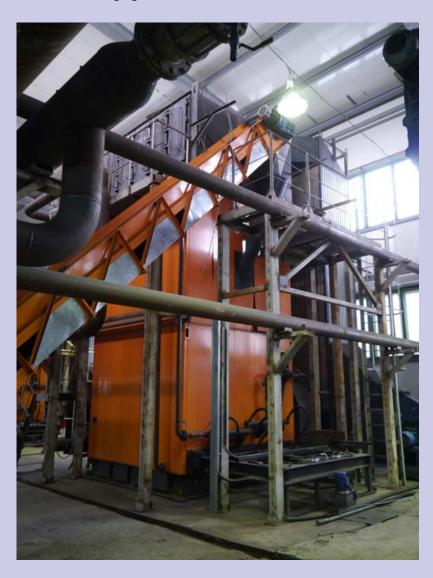
На заднем фронте котла имеется люк для осмотра состояния колосниковой решетки.

Подогрев воды сетевого контура осуществляется с помощью пластинчатых теплообменников от внутреннего контура котла. Регулирование температуры осуществляется автоматически трехходовым регулятором от системы погодозависимой автоматики.

Насосы котлового контура марки WILO имеют высокий КПД и обеспечивают необходимую производительность 150 м³/ч

Склад топлива биотопливной (щеповой) котельной «Лена-Восточная», г. Усть-Кут.

Котельный зал



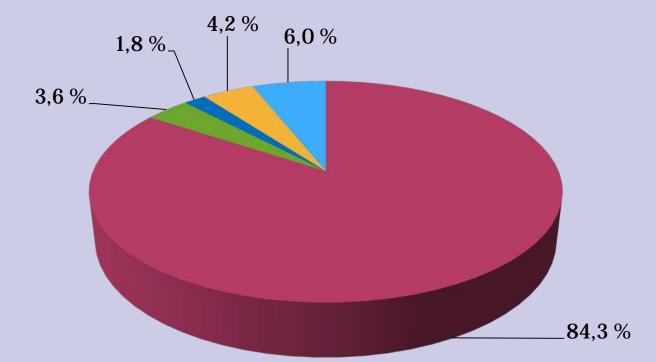
Блок пластинчатых теплообменников котельной


Котёл «СОЮЗ» с транспортёром подачи топлива

Передний фронт котла «Гейзер» с вентилятором дожига и узлом подачи топлива

Мнемо-схема с отображением процессов горения в котле «Гейзер»

■ экономия по расходам на топливо 70 млн. руб.

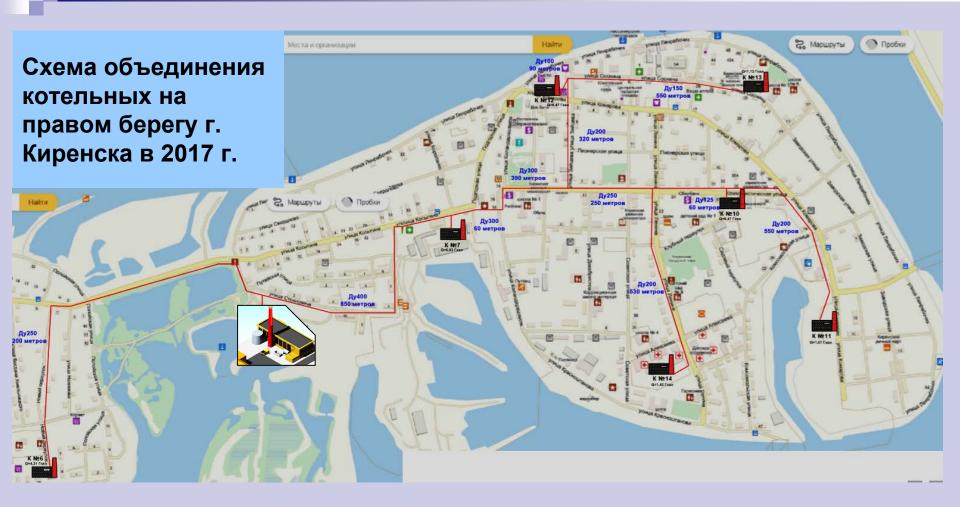

Годовой экономический эффект

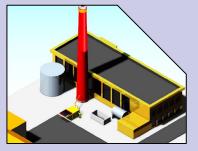
• экономия по расходам на электроэнергию 3 млн. руб. *ОТ Реализации*

■ экономия по расходам на водоснабжение и водоотведение 1.5 млн.руб. ИНВЕСТИЦИОННОГО ПРОЕКТА

В МКР. «VIEЛЬНИЧНЫЙ», Т. КИРЕНСКА

■ экономия по расходам на ремонт 5 млн. руб.




Инвестиционные ПРОЕКТЫ ООО «КиренскТеплоРесурс»:

■ 1. г. Киренск, Киренский р-н, Иркутская обл.: «Строительство водогрейной котельной на биотопливе (щепе) и реконструкция сетей теплоснабжения в м-не Центральный г. Киренска в рамках централизации системы теплоснабжения правобережной части г. Киренска».

Проект планируется реализовывать через энергосервисный контракт и концессионное соглашение по муниципальным объектам сетей теплоснабжения г. Киренска.

- Начало реализации Проекта: **2017 г.**
- Окончание расчетов по энергосервисному контракту: 2023 г.
- Общая стоимость Проекта: 400 млн. руб.

Новая водогрейная котельная на щепе. Мощность новой котельной - не менее 22 МВт. Подключенная тепловая нагрузка - около 16,2 Гкал/час. Потери в тепловых сетях – около 1,8 Гкал/час (около 11%)

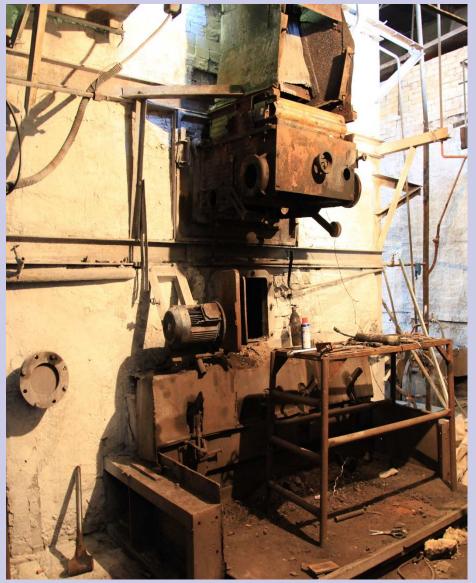
Инвестиционные ПРОЕКТЫ ООО «КиренскТеплоРесурс»:

• 2. п. Новая Игирма, Нижнеилимский р-н, Иркутская обл.: «Модернизация системы теплоснабжения п. Новая Игирма» за счет объединения 3 котельных и реконструкции сетей теплоснабжения п. Новая Игирма.

Проект планируется реализовывать в три этапа:

Этап №1: «Объединение котельных №1 и №3».

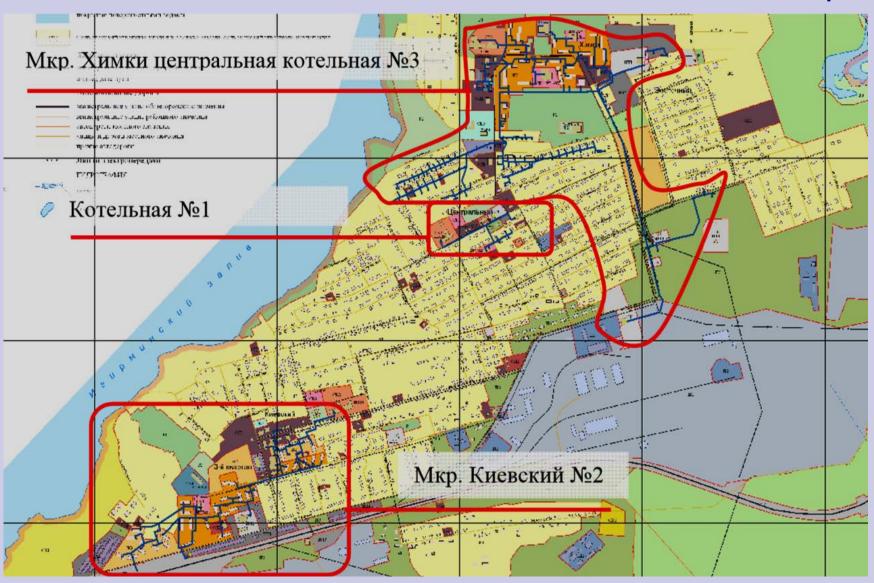
Этап №2: «Объединение котельных №2 и №3. Перевод котлов котельной №3 в водогрейный режим».


Этап №2: «Постепенная замена котлов котельной №3 на современные».

- Начало реализации Проекта: 2015 г.
- Окончание возврата инвестиций: 2021 г.
- Общая стоимость Проекта: 235 млн. руб.

Котельная №1 – Дровяная котельная

Котельная №2 –


Котельная №3 –

Зоны действия тепловых источников п. Новая Игирма

